If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x+20=-4
We move all terms to the left:
x^2+12x+20-(-4)=0
We add all the numbers together, and all the variables
x^2+12x+24=0
a = 1; b = 12; c = +24;
Δ = b2-4ac
Δ = 122-4·1·24
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*1}=\frac{-12-4\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*1}=\frac{-12+4\sqrt{3}}{2} $
| 12=6(n-7)0 | | 1.25t-3.75=22.50 | | 2x+1+5x-5=130 | | (4x+4)+79+65=180 | | 3/7(14x-21)+2=5 | | 68=5r+18 | | 0.7(10x+24)=3.2(0.2x+5) | | -8x4x=-32+25x | | (5x+20)+(3x+14)+114=180 | | (3y+8)=35 | | (9x+1)=(3x+8) | | 2(h+3.50=-11 | | 6x-6+3x=x | | (x+19)=(3x+8) | | 180=(x+19)+(9x+1) | | 3t-6=5t+4 | | 180=(5x-23)+(7x-1) | | (2x+5)+(17x-14)+(12x)=360 | | 14x+64=360 | | 8+5.25h=11 | | -3(-5x+6)=-138 | | 5n*2n=20 | | 2x-(9x+4)=3x-44 | | 180-13x-6+7x+4+5x+10=180 | | 4g-8=-16 | | (6x)+(3x+5)+(40)=180 | | 7(2q-3)=21q+21 | | 5m(m-1)+16(2m+3)=3(2m-7)-m | | 15.4=-1.5+h | | -5(4-2j)=-10 | | x+-56=180 | | 3x^2-18=5x^2 |